Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to sea water.

نویسندگان

  • W S Marshall
  • E M Lynch
  • R R F Cozzi
چکیده

Cellular distribution of cystic fibrosis transmembrane conductance regulator (CFTR) immunofluorescence was detected by monoclonal antibody directed to the C terminus of killifish CFTR (kfCFTR) in chloride cells of fresh water (FW) adapted fish and animals transferred to sea water (SW) for 24h, 48h and 14+ days. Confocal microscopy allowed localization within mitochondria-rich (MR) cells to be determined as superficial (i.e. in the apical membrane) or deeper within the cytoplasm of the cells. In FW, 90 % of MR cells had diffuse kfCFTR immunofluorescence in the central part of the cytosol, with only 8.1 % having apical kfCFTR, which was 6.6+/-0.54 microm below the microridges of surrounding pavement cells. Curiously, FW but not SW pavement cells also had positive immunofluorescence to kfCFTR. After 24h in SW, a time when kfCFTR expression is elevated, a condensed punctate immunofluorescence appeared among 18.8 % of MR cells, 13.4+/-0.66 microm (mean +/- S.E.M.) below the surface of the cells. By 48h, a majority (76.3 %) of MR cells had punctate kfCFTR distribution and the distance from the surface was less (7.8+/-0.2 microm), a distribution approaching the SW-acclimated condition (i.e. all MR cells showing kfCFTR immunofluorescence, 6.1+/-0.04 microm below the surface). In contrast, NKCC immunofluorescence was condensed and localized in lateral parts of MR cell complexes in FW animals and then redistributed to the whole basal cytoplasm after acclimation to SW. CFTR, the anion channel responsible for Cl(-) secretion in marine teleosts, redistributes in MR cells during SW acclimation by condensation of a diffuse distribution below the apical crypt, followed by translocation and insertion in the apical membrane. NKCC, the cotransporter that translocates Cl(-) across the basolateral membrane, moves from an eccentric cytosolic location in FW to a diffuse basolateral localization in SW chloride cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WNK1 and p38-MAPK distribution in ionocytes and accessory cells of euryhaline teleost fish implies ionoregulatory function

Ionocytes of euryhaline teleost fish secrete NaCl, under regulation by serine and threonine kinases, including with-no-lysine kinase (WNK1) and p38 mitogen-activated protein kinase (MAPK). Mummichogs (Fundulus heteroclitus L.) were acclimated to freshwater (FW), full strength seawater (SW) and hypersaline conditions (2SW). Immunocytochemistry of ionocytes in opercular epithelia of fish acclimat...

متن کامل

The role of volume-sensitive ion transport systems in regulation of epithelial transport.

This review focuses on using the knowledge on volume-sensitive transport systems in Ehrlich ascites tumour cells and NIH-3T3 cells to elucidate osmotic regulation of salt transport in epithelia. Using the intestine of the European eel (Anguilla anguilla) (an absorptive epithelium of the type described in the renal cortex thick ascending limb (cTAL)) we have focused on the role of swelling-activ...

متن کامل

NaCl and fluid secretion by the intestine of the teleost Fundulus heteroclitus: involvement of CFTR.

Sections of posterior intestine of the euryhaline killifish Fundulus heteroclitus adapted to sea water were stimulated by the calcium ionophore ionomycin (1 micromol l(-1)) in combination with agents to elevate intracellular cyclic AMP levels, 0.5 mmol l(-1) dibutyryl-cyclic AMP (db-cAMP) with 0.1 mmol l(-1) 3-isobutyl-1-methylxanthine (IBMX). Intestinal bag preparations from recently fed anima...

متن کامل

Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer.

Maintenance of ion balance requires that ionoregulatory epithelia modulate ion flux in response to internal or environmental osmotic challenges. We have explored the basis of this functional plasticity in the gills of the euryhaline killifish Fundulus heteroclitus. The expression patterns of several genes encoding ion transport proteins were quantified after transfer from near-isosmotic brackis...

متن کامل

Morpholino Gene Knockdown in Adult Fundulus heteroclitus: Role of SGK1 in Seawater Acclimation

The Atlantic killifish (Fundulus heteroclitus) is an environmental sentinel organism used extensively for studies on environmental toxicants and salt (NaCl) homeostasis. Previous research in our laboratory has shown that rapid acclimation of killifish to seawater is mediated by trafficking of CFTR chloride channels from intracellular vesicles to the plasma membrane in the opercular membrane wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 205 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2002